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Introduction 
 
Molecular docking is a useful tool for structure-based virtual screening (SBVS), allowing the 
identification of potential inhibitors for several targets, using a scoring function (SF) to predict the 
ligand-protein binding affinity (Berishvili et al., 2018). This tool has some disadvantages concerning 
the accuracy in biological prediction when compared to experimental data (Nogueira; Koch, 2019). In 
this context, the post-processing of docking SFs using machine learning algorithms (MLA) made it 
possible to obtain classification models comparable to biological experiments (Yasuo; Sekijima, 2019). 
An attractive target for the development of classification models using MLA is Thromboxane synthase 
(CYP5A1 or TXS), an enzyme involved in platelet aggregation that plays an important role in 
thrombotic events (Mesitskaya et al., 2018). Thus, we developed a classification model using MLA 
from the docking SF to validate activity prediction of TXS inhibitors. 
 
Method 
 
The 3D-structure of TXS was obtained according to the description in the available literature (Yang et 
al., 2017). TXS inhibitors (TXSI) were searched in ChemBL databases with IC50 values in different 
biological assays. The duplicated structures, inorganic salts, and undefined chirality were removed and 
the remaining 333 TXSI were classified using pIC50 values (-logIC50) in a range from 4.0 to 9.0, from 
which 144 strong inhibitors (pIC50 ≥7.3) considered active compounds and 144 weak inhibitors (pIC50 
≤7.0) considered inactive compounds were selected. 3D TXSI were generated using Open Babel 
(pH=7.8) (O’Boyle et al., 2011). Molecular docking studies were performed using GOLD 2020.1 
(Jonnes et al., 1997), considering the SFs ChemPLP, ChemScore, and GoldScore. The molecular 
descriptors were calculated in the DataWarrior program 5.2.1 (Sander et al., 2015). The classification 
models were developed using KNIME software 4.1.3. The datasets were normalized (Z-score), filtered 
by linear correlation, and partitioned in the training sets (70%) and test sets (30%) considering the 
linear, random, and stratified partition modes. The tested MLA were XGBoost (Extreme Gradient 
Boosting), Random Forest, Support Vector Machine (SVM), Naive Bayes, and Linear Regression. The 
tenfold internal cross-validation was carried out with the training sets. Models containing better 
metrics of the following: AUC-ROC, sensitivity (Se), specificity (Sp), accuracy (Ac), F-score (F1) and 
Matthews’s correlation coefficient (MCC), were chosen to validate activity prediction. Kernel density 
plot was used to illustrate discrimination between active and inactive compounds. The applicability 
domain (APD) of training sets was calculated for the test sets using Enalos node on KNIME. 
 
Results / Discussion 
 
The TXSI database was composed by a balanced ratio (1:1) of active and inactive compounds 
(Berishvili et al., 2018). The compounds with pIC50 values between 7.0 and 7.3 were excluded to 
improve the discriminant power of the models (Jain et al., 2017). Docking SFs were used without 



 

rescoring because the co-crystallized ligand of TXS was not available. The docking scores with zero 
variance and high Pearson correlation (0.7) were removed. Molecular descriptors were added with 
docking scores to evaluate the performance of the models with a filter correlation of 0.5. The training 
set was submitted to a tenfold cross-validation to reduce overfitting in MLA models. The XGBoost 
algorithm provided better statistics parameters for training sets for all SFs. For the test set, the 
ChemPLP model with stratified random partition mode retrieved better metrics of AUC-ROC (0.727), 
MCC (0.47) and F1 (0.716), with a recall of 67% of actives (Se), 80% of inactives (Sp) and Ac of 
74%. AUC-ROC values above 0.8 indicate high capacity of prediction, but other parameters need to 
be observed as Ac, F1 and MCC (Jain et al., 2017). The MCC value can represent total prediction 
(+1), random prediction (0) or total disagreement between prediction and observation (−1). In Figure 
1, kernel density plots of ChemPLP Fitness score (I) and ChemPLP model score (II) showed better 
discrimination through the model (Berishvili et al. 2018). The density plot of the ChemPLP model 
plus molecular descriptors with random partition mode (III) presented an improvement of 
discrimination of actives (76%), AUC-ROC (0.822), and F1 (0.736), with the same Ac and MCC. The 
APD values were 11.252 (ChemPLP model) and 61.475 (ChemPLP plus descriptors). The prediction 
for all compounds in the test sets was considered reliable with domain values lower than APD values 
(Jain et al., 2017). 
 
Figure 1. Kernel density plots for test sets considering (I) the ChemPLP Fitness score, (II) ChemPLP 
with stratified Partitioning, (III) ChemPLP plus molecular descriptors with random Partitioning. P= 
Probability; Red line = active; Cyan line = inactive. 
 
 
 
 
 
 
 
 
 
Conclusion 
 
In this study, we developed structure-based classification models using machine learning algorithms 
and docking scores to validate activity prediction of TXSI. We observed better discrimination of 
actives with the ChemPLP model score than with the ChemPLP Fitness score, with a prediction 
accuracy of 74%. However, the model was improved by a combination of docking scores and 
molecular descriptors, increasing the AUC-ROC from 0.727 to 0.822, and discrimination to 76% of 
active compounds. The applicability domain showed higher reliability of predictions for the test set for 
both models. 
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